Infinitely Many Radial and Non-Radial Solutions for a Class of Hemivariational Inequalities
نویسندگان
چکیده
منابع مشابه
Infinitely many solutions for a class of hemivariational inequalities involving p(x)-Laplacian
In this paper hemivariational inequality with nonhomogeneous Neumann boundary condition is investigated. The existence of infinitely many small solutions involving a class of p(x)−Laplacian equation in a smooth bounded domain is established. Our main tool is based on a version of the symmetric mountain pass lemma due to Kajikiya and the principle of symmetric criticality for a locally Lipschitz...
متن کاملExistence and Infinitely Many Solutions for an Abstract Class of Hemivariational Inequalities
A general method is given in order to guarantee at least one nontrivial solution, as well as infinitely many radially symmetric solutions, for an abstract class of hemivariational inequalities. This abstract class contains some special cases studied by many authors. We remark that, differently from the classical literature, in the proofs we use the Cerami compactness condition and the principle...
متن کاملInfinitely many radial solutions for the fractional Schrödinger-Poisson systems
In this paper, we study the following fractional Schrödinger-poisson systems involving fractional Laplacian operator { (−∆)su+ V (|x|)u+ φ(|x|, u) = f(|x|, u), x ∈ R3, (−∆)tφ = u2, x ∈ R3, (1) where (−∆)s(s ∈ (0, 1)) and (−∆)t(t ∈ (0, 1)) denotes the fractional Laplacian. By variational methods, we obtain the existence of a sequence of radial solutions. c ©2016 All rights reserved.
متن کاملExistence results of infinitely many solutions for a class of p(x)-biharmonic problems
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
متن کاملInfinitely many solutions for a class of $p$-biharmonic equation in $mathbb{R}^N$
Using variational arguments, we prove the existence of infinitely many solutions to a class of $p$-biharmonic equation in $mathbb{R}^N$. The existence of nontrivial solution is established under a new set of hypotheses on the potential $V(x)$ and the weight functions $h_1(x), h_2(x)$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2005
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181069682